Detection of Overlapping Communities in Social Tagging Systems
نویسنده
چکیده
Some of the most popular sites in the Web today are social tagging systems or folksonomies (e.g. Delicious, Flickr, LastFm etc.) where users share resources and collaboratively annotate resources with tags which help in the search, personalized recommendation and organization of the resources. Folksonomies are modelled as tripartite (user-resource-tag) hypergraphs in order to study their network properties, and detecting communities of similar nodes from such networks is a challenging and well-studied problem. However, most existing algorithm for community detection in folksonomies assign unique communities to nodes, whereas in reality, nodes in folksonomies are associated with multiple overlapping communities – users have multiple topical interests, and the same resource is often tagged with semantically different tags. The few attempts to detect overlapping communities work on projections of the hypergraph, which results in significant loss of the information contained in the original tripartite structure. In this work, we propose the first algorithm to detect overlapping communities in folksonomies using the complete hypergraph structure. Our algorithm converts a hypergraph into its corresponding weighted line-graph, using measures of hyperedge similarity, whereby any community detection algorithm on unipartite graphs can be used to produce overlapping communities in the folksonomy. Through extensive experiments on synthetic as well as real folksonomy data, we demonstrate that the proposed algorithm can detect better community structures as compared to existing state-of-the-art algorithms for folksonomies.
منابع مشابه
Overlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملIdentifying overlapping communities using multi-agent collective intelligence
The proposed algorithm in this research is based on the multi-agent particle swarm optimization as a collective intelligence due to the connection between several simple components which enables them to regulate their behavior and relationships with the rest of the group according to certain rules. As a result, self-organizing in collective activities can be seen. Community structure is crucial...
متن کاملCommunity Detection Based on Topic Distance in Social Tagging Networks
Research on the community detection in social tagging networks has attracted much attention in the last decade. Extracting the hidden topic information from tags provides a new way of thinking for community detection in social tagging networks. In this paper, a topic tagging network by extracting several topics from the tags through using the Latent Dirichlet Allocation (LDA) model is built fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012